Skip to content

GFM-RAG Configuration

An example configuration file for GFM-RAG is shown below:

Example

gfmrag/workflow/config/stage3_qa_ircot_inference.yaml
hydra:
  run:
    dir: outputs/qa_agent_inference/${dataset.data_name}/${now:%Y-%m-%d}/${now:%H-%M-%S} # Output directory

defaults:
  - _self_
  - doc_ranker: idf_topk_ranker # The document ranker to use
  - agent_prompt: hotpotqa_ircot # The agent prompt to use
  - qa_prompt: hotpotqa # The QA prompt to use
  - ner_model: llm_ner_model # The NER model to use
  - el_model: colbert_el_model # The EL model to use
  - qa_evaluator: hotpotqa # The QA evaluator to use

seed: 1024

dataset:
  root: ./data # data root directory
  data_name: hotpotqa_test # data name

llm:
  _target_: gfmrag.llms.ChatGPT # The language model to use
  model_name_or_path: gpt-3.5-turbo # The model name or path
  retry: 5 # Number of retries

graph_retriever:
  model_path: rmanluo/GFM-RAG-8M # Checkpoint path of the pre-trained GFM-RAG model
  doc_ranker: ${doc_ranker} # The document ranker to use
  ner_model: ${ner_model} # The NER model to usek
  el_model: ${el_model} # The EL model to use
  qa_evaluator: ${qa_evaluator} # The QA evaluator to use
  init_entities_weight: True # Whether to initialize the entities weight

test:
  top_k: 10 # Number of documents to retrieve
  max_steps: 2 # Maximum number of steps
  max_test_samples: -1 # -1 for all samples
  resume: null # Resume from previous prediction

General Configuration

Parameter Options Note
run.dir None The output directory of the log

Defaults

Parameter Options Note
ner_model None The config of the ner_model
el_model None The config of the el_model
doc_ranker None The config of the doc_ranker
qa_evaluator None The config of the qa_evaluator
agent_prompt None The config of the PromptBuilder used for IRCOT
qa_prompt None The config of the PromptBuilder

Dataset

Parameter Options Note
root None The data root directory
data_name None The data name

LLM

Parameter Options Note
_target_ None The language model to use
model_name_or_path None The model name or path
Additional parameters None Parameters to initialize a language model

Please refer to the LLMs page for more details.

Graph Retriever

Parameter Options Note
_target_ None The graph retriever to use
model_path None Checkpoint path of the pre-trained GFM-RAG model
doc_ranker None The document ranker to use
ner_model None The NER model to use
el_model None The EL model to use
qa_evaluator None The QA evaluator to use
init_entities_weight True,False Whether to initialize the entities weight

Test

Parameter Options Note
top_k None Number of documents to retrieve
max_steps None Maximum number of steps, 1 for single step
max_test_samples None Maximum number of samples to test (-1 for all samples)
resume None Resume from previous prediction